Assessing the Impact of Linux Networking on CPU Consumption

by Davide Miola

Contents

- 1. Introduction
 - 1.1. Scope of this work and why it is important
 - 1.2. Background
- 2. Design and implementation
 - 2.1. Basic algorithm overview
 - 2.2. Handling switching of the execution context
 - 2.3. Event breakdown functionality
 - 2.3.1. Full Functions Tracking
 - 2.3.2. Network Stack Sampling
- 3. Results and validation
- 4. Conclusions

1. Introduction

1.1 Scope of this work and why it is important

1.2 Background

eBPF (extended Berkeley Packet Filter) is a technology of the Linux kernel that allows dynamic injection and execution of user code into the kernel

- **Fast**: Jitted code is run at near native speed
- **Safe**: Verifier ensures program correctness
- **Portable**: vCPU architecture is host agnostic (*mostly*¹)
- Versatile: Applications include tracing, networking data plane implementation, and more

1.2 Background

2. Design and Implementation

2.1 Basic algorithm overview

- Attach eBPF tracing probes to in-kernel networking entry points
- Measure on-CPU time as diff between entry and exit timestamps

Fast and efficient operation enables real time, continuous monitoring

2.1 Basic algorithm overview

Event	Responsibility	eBPF entry ELF sec.	eBPF <i>exit</i> ELF sec.
NET_RX_SOFTIRQ	$\mathrm{Network} \to \mathrm{Socket}$	tp_btf/softirq_entry	tp_btf/softirq_exit
NET_TX_SOFTIRQ	Flush TX queues	tp_btf/softirq_entry	tp_btf/softirq_exit
Socket recv ops	$\mathrm{Socket} \to \mathrm{Application}$	fentry/sock_recvmsg	fexit/sock_recvmsg
Socket send ops	$\operatorname{Application} \to \operatorname{Network}$	fentry/sock_sendmsg	fexit/sock_sendmsg

9

2.2 Handling switching of the execution context

- 1. Mark each kernel task with a flag identifying the currently running socket operation, if any (BPF_MAP_TYPE_TASK_STORAGE is perfect for this)
- 2. At every tp_btf/softirq_entry impersonate the socket operation's exit probe associated to the interrupted task's flag
- 3. Likewise for the tp_btf/softirq_exit tracepoint

2.2 Handling switching of the execution context

- 1. Instrument the sched_switch tracepoint
- 2. At every task switch, impersonate the outgoing task's exit probe and the incoming task's entry probe depending on their flag's value
- 3. Note that softirgs can not be preempted!

2.3.1 Full Functions Tracking

But...

complexity in the traced function hierarchy translates into **complex eBPF code**, and also **instrumenting per-packet functions is not a good idea** in high speed networks

2.3.1 Full Functions Tracking

Overhead on throughput with Full Functions Tracking

iperf3 rx, GRO disabled

2.3.2 Network Stack Sampling

- → BPF_MAP_TYPE_STACK_TRACE + hash map for counts
 - 🗸 in-kernel trace summarization
 - X requires two maps
 - > X no efficient method to retrieve them in user-space (multiple syscalls per stackid!)
- → emulate stack trace map with hash map
 - 🗹 in-kernel trace summarization
 - 🖌 🗹 can copy whole map to user-space with one batch lookup
 - requires two stack dumps to get stackid in BPF
- → BPF_MAP_TYPE_RINGBUF
 - 🗹 "idiomatic" way to stream data from BPF to the user-space
 - Image: Stack dump per invocation
 - X no in-kernel trace summarization
- → mmapable BPF_MAP_TYPE_ARRAY
 - 🔽 no syscalls to read traces in user-space
 - 🗹 only one stack dump per invocation
 - X no in-kernel trace summarization

2.3.2 Network Stack Sampling

Overhead on throughput with Network Stack Sampling, Ring Buffer vs mmapable Array

iperf3 rx, GRO disabled

2.3.2 Network Stack Sampling

User-space CPU utilization for Network Stack Sampling with Ring Buffer and Mmapable Array backends.

3. Results and Validation

3 Results and validation

iperf3 UDP receive

Google's "Online Boutique" microservices demo

3 Results and validation

Flame Graph: iperf3 UDP recv

3 Results and validation

Flame Graph: iperf3 UDP recv

4. Conclusions

4 Conclusions

Current limitations

- Only measures in-kernel networking (i.e. no QUIC, TLS, or custom user-space data-planes)
- Ignores top-halves as well (wide range of implementations and minimal CPU consumption)

Future work

- Extend cost breakdown to more sub-events and, possibly, more top level entry points
- Explore an all-sampling measurement stack to further reduce overhead on high speed networks

Questions?